Smoothed L0-Constraint Dictionary Learning for Low-Dose X-Ray CT Reconstruction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothed l0 Norm Regularization for Sparse-View X-Ray CT Reconstruction

Low-dose computed tomography (CT) reconstruction is a challenging problem in medical imaging. To complement the standard filtered back-projection (FBP) reconstruction, sparse regularization reconstruction gains more and more research attention, as it promises to reduce radiation dose, suppress artifacts, and improve noise properties. In this work, we present an iterative reconstruction approach...

متن کامل

Thresholded smoothed-l0(SL0) dictionary learning for sparse representations

In this paper, we suggest to use a modified version of Smoothed-!0 (SL0) algorithm in the sparse representation step of iterative dictionary learning algorithms. In addition, we use a steepest descent for updating the non unit columnnorm dictionary instead of unit column-norm dictionary. Moreover, to do the dictionary learning task more blindly, we estimate the average number of active atoms in...

متن کامل

Low-dose spectral CT reconstruction using L0 image gradient and tensor dictionary

Weiwen Wu1,2, Yanbo Zhang2, Qian Wang2, Fenglin Liu1,3,*, Peijun Chen1 and Hengyong Yu2,* 1Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China 2Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA 3Engineering Research Center of Industrial Computed Tomography Nondestructive...

متن کامل

A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning

In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of ...

متن کامل

Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares

BACKGROUND In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal with the sparse CT reconstruction problem. However, the existing DL algorithm focuses on the minimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3004174